Maximal simultaneously nilpotent sets of matrices over antinegative semirings

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On idempotent matrices over semirings

Idempotent matrices play a significant role while dealing with different questions in matrix theory and its applications. It is easy to see that over a field any idempotent matrix is similar to a diagonal matrix with 0 and 1 on the main diagonal. Over a semiring the situation is quite different. For example, the matrix J of all ones is idempotent over Boolean semiring. The first characterizatio...

متن کامل

Structure of nilpotent matrices over fields

A zero-nonzero pattern A is said to be potentially nilpotent over a field F if there exists a nilpotent matrix with entries in F having zero-nonzero pattern A. We explore the construction of potentially nilpotent patterns over a field. We present classes of patterns which are potentially nilpotent over a field F if and only if the field F contains certain roots of unity. We then introduce some ...

متن کامل

Invertible and Nilpotent Matrices over Antirings

Abstract. In this paper we characterize invertible matrices over an arbitrary commutative antiring S with 1 and find the structure of GLn(S). We find the number of nilpotent matrices over an entire commutative finite antiring. We prove that every nilpotent n×n matrix over an entire antiring can be written as a sum of ⌈log2 n⌉ square-zero matrices and also find the necessary number of square-zer...

متن کامل

Tan's Epsilon-Determinant and Ranks of Matrices over Semirings

We use the ϵ-determinant introduced by Ya-Jia Tan to define a family of ranks of matrices over certain semirings. We show that these ranks generalize some known rank functions over semirings such as the determinantal rank. We also show that this family of ranks satisfies the rank-sum and Sylvester inequalities. We classify all bijective linear maps which preserve these ranks.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2016

ISSN: 0024-3795

DOI: 10.1016/j.laa.2016.08.014